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ABSTRACT 

The magnetic suscept ibi l i ty  of single-crystal VCx (x.0.76, 

0.81, 0.84, 0.87) has been found t o  decrease sharply as x increases 

from 0.76, i n  qualitative agreement with the  resul t s  of previous 

measurements made by Bittner and Goretzki on powder specimens. The 

present results,  however, show a minimum near x=0.84 followed by a 

s l ight  increase at xa.87, and i n  t h i s  respect are similar t o  the 

observations of Borukhovich e t  a l .  i n  t h e i r  studies of the other 

Group V carbides NbCx and TaCx. This variation of the suscept ibi l i ty  

i s  attributed primarily t o  the (van Vleck) o rb i t a l  paramagnetism, 

supporting the suggestion made previously by Fkoidevaux and Rossier. 

A simple model fo r  the o rb i t a l  paramagnetism i n  VCx i s  shown t o  

account qual i ta t ively for  the observed variation with carbon content. 



5 1. INTRODUCTION 

The t rans i t ion  metal carbides have been studied extensively 

i n  recent years because of t h e i r  technological in te res t  and because 

the origins of t h e i r  physical properties remain obscure. There have 

emerged recently two independent model calculations of the electronic 

band-structure of T ic .  The LCAO calculations of Bilz (1958) and the 

APW calculations of Ern and Switendick (1965) and Conklin and Silversmith 

(1968) indicate tha t  a major portion of the bonding ar i ses  from inter-  

actions between the 2p orb i ta l s  of the carbon atoms, and from hybridi- 

zation interactions between these orb i ta l s  and the 3d orb i ta l s  of the 

metal atoms. Moreover the energy bands derived from the 2p s t a t e s  of 

the carbon atoms l i e  lower i n  energy than those derived from the 3d 

s t a t e s  of the metal atoms. This model thus suggests tha t  the bonding 

i s  contributed predominantly by strong covalent interactions between 

the metal and nonmetal atoms and tha t  electrons are  transferred from 

energy bands derived from the 3d s t a t e s  of the  metal atoms t o  2p s t a t e s  

of the carbon atoms. 

In  contrast t o  t h i s  model, t ha t  of Lye and Logothetis (1966) 

indicates tha t  the  electronic structure of T i c  exhibits a close resem- 

blance t o  tha t  of the fcc t r ans i t ion  metals (Lye 1967). They conclude 

tha t  the  bonding i s  predominantly due t o  metal-metal interactions and 

tha t  the carbon 2p bands l i e  higher i n  energy than those derived from 

the metal atom 3d bands, i.e., tha t  electrons are  transferred from 

the carbon 2p s t a t e s  t o  the metal atom 3d s tates .  Recent low tempera- 

ture  specific heat measurements ( ~ m d e s ,  Finegold and we 1970; 



Larndes, Finegold, Bloom, w e  u 7 0 )  lend support t o  t h i s  inter: 

pretation i n  tha t  a peakin the density-of-states curve was found near 

the  composition VC 0.85' The width and position of t h i s  peak were 

similar t o  those predicted by Lye e t  a l .  (1968). A search 

 l loom, Finegold, &ye, Radebaugh and Siegwarth S 7 0 )  f o r  superconducti- 

v i ty  i n  these samples indicated tha t  none of them became a superconductor 

above 30 mK. This then implies, through the use of McMillanls (1968) 

equation, that the densities of s t a t e s  determined fromthe specific 

heat measurements are  probably not great ly enhanced over the "bare" 

values. Comparison of the specific heat r e su l t s  with the other cal- 

culations is prohibited by t h e i r  lack of suff icient  resolution. 

The present investigation w a s  undertaken f o r  the  purpose of 

determiang whether the magnetic susceptibility,%, also ref lec ts  the 

peak i n  the  curve of density of s t a t e s  versus energy, which it should 

if  the  spin suscept ibi l i ty  were the  dominant contribution t o  X, because 

where p i s  the  Bohr magneton, N ( E ~ )  i s  the  density of s t a t e s  f o r  
B 

a single spin a t  the Fermi energy and 1/(1-p) is  the  Stoner enhance- 

ment factor  (Stoner 1936). Bevious measurements of the  magnetic 

suscept ibi l i ty  of vanadium carbide and other t rans i t ion  metal carbides 

( ~ i t t n e r  and Goretzki 1962, Costa and Conte 1964, Caudron, Ducastelle 

and Cost a 1970, Borukhovich, Dubrovskaya, Matveenko and Gel'd 1969) 

usually indicate t h a t  the  suscept ibi l i ty  decreases with increasing 

carbon content. The exceptions are  the  monocarbides of niobium and 



tantalum fo r  which X exhibits sharp minima a t  the compositions 

Nbc0080 and TaC 0.78 ( ~orukhovich, Dubrovich, Dubrovskaya, Matveenko 

and ~e3 fd  1969). Other workers used samples produced by various 

sintering processes, whereas the  samples used i n  the present work 

are very pure well-characterized single crystals  grown by zone- 

melting . 
g 2. EXPERIMENTAL TECHNIQUES AND RESULTS 

2.1, Specimen Characterization 

Large single crys ta l  samples of VCx were grown by a f loat ing 

zone technique ( ~ r e c h t  and Hollox 196e ). Chemical analyses per- 

formed on boules representative of these samples indicate tha t  they 

contain approximately 0.01 w/o each of oxygen and nitrogen, as  well 

as t races of metallic, non-magnetic impurities. From four of these 

boules, three of which were used previously f o r  measurements of the  

specific heat ( x  = 0.76, 0.81 and 0.87) (~owndes e t  al. 1970), small, 

cylindrically shaped samples approximately 10 mm i n  length and 4 mm 

i n  diameter were cut f o r  use i n  studies of t h e i r  superconducting 

t rans i t ion  temperatures  l loom e t  a l .  1970) and f o r  the  present 

investigation of t h e i r  magnetic susceptibili ty.  The VCO 84 sample . 
was  machined from a larger  cylinder, s i m i l a r  t o  the one used i n  the  

specific heat measurements. The compositions of the  four VCx sanples 

were determined (as  i n  Lowndes et al.  1970) from measurements cpf t h e i r  

x-ray l a t t i c e  parameters t o  be XW 0.755, 0.807, 0.836, apd 0.866. 



2.2. Magnetic Susceptibili ty Measurements and Results. 

The magnetic suscept ibi l i ty  measurements were performed i n  t h e  

temperature range 77 t o  300 K with a vibrating~sample magnetometer 

( ~ o d e l  FM-1, Princeton Applied Research Corp., Princeton, New Jersey; 

Foner 1959) a t  8 kG. The susceptibili ty-f i e ld  re la t ion  w a s  l inear  

t o  8 kG. The precision of the  measurement i s  within f 1%. The 

samples were measured on consecutive days and the room temperature 

values were a l l  rechecked within one hour. The contribution t o  the 

t o t a l  suscept ibi l i ty  ar is ing from the  Teflon bolder i n  which the  samples 

were individually mounted was determined a f t e r  each measurement. 

Each sample was cooled by allowing cold nitrogen gas t o  flow by it, 

and the resulting temperature w a s  measured t o  within * 3 K using a 

copper-constantan thermocouple. This large uncertainty i n  the 

measurement of temperature, caused by temperature gradients i n  the  

sample chamber,has l i t t l e  significance f o r  our results,because the  

suscept ibi l i ty  was found t o  change only slowly with temperature. 

as shown i n  f ig .  1. 

A plot  of the room temperature suscept ib i l i t ies  versus com- 

position shows a sharp decrease f r m t h e  value a t  x = 0.76 t o  

a minimum near x = 0.84, followed by a s l igh t  increase a t  x = 0.87. 

Extrapolation of the data i n  fig.  1 t o  0 K yields a closely similar 

variation of the suscept ibi l i ty  with carbon content. For c l a r i t y  

and convenience, the  l a t t e r  curve only is  shown i n  f ig .  2. The 

rapid decrease of the  suscept ibi l i ty  from x = 0.76 t o  x = 0.81 i s  

i n  qual i ta t ive agreement with the  resul t s  of measurements made by 

Bittner and Goretzki (1962) on polycrystalline (powder) specimens 
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Figure 1. The magnetic susceptibility/gm of VCx crystals  

plotted as a f'unction of T . ~  The extrapolated 

values a t  0 K are  shown as Xmeas i n  f i g .  2. 



$3. DISCUSSION 

The susceptibili ty,  X, i s  the sum of several contributions 

(see, e.g., Gladstone, Jensen and Schrieffer l.969): 

where Xion i s  the  diamagnetism of the  ion cores, Xp i s  the  Pauli 

paramagnetism of the conduction electrons, %= - $ (dm")2% is 

the  associated Landau diamagnetism (m i s  the  f r ee  electron mass 

and m* i s  the band structure effect ive mass), and % i s  the 

Van Vleck o rb i t a l  paramagnetism ( ~ u b o  and Obata 1956). 

'ion 
can be estimated by using -13 x low6 emu/mole f o r  the  

diamagnetic contribution of the  vanadium ion cores ( ~ u ~ u e n i n  and 

-6 Baldock 1966) and x(-1.9 x 10 emu/mole) f o r  the carbon ion cores, 

where x i s  the  carbon atom f rac t ion  i n  VCx. The contribution of the 

ion cores obtained i n  t h i s  manner i s  plotted as Xion i n  f ig .  2. It 

varies much too slowly with composition t o  account f o r  the  behavior 

observed experiment al ly .  

Xp can be estimated from the  values of the electronic specific 

heat measured previously (fowndes e t  al. 1970). I f  the effects  of 

electron-electron and electron-phonon interactions are  neglected, the 

curve shown as X i n  Fig. 2 i s  .obtained. r 
The Landau diamagnetism is proportional t o  X but probably i s  I?' 

substantially smaller i n  magnitude. It i s  evident, therefore, tha t  

t h e i r  sum ( + x ~ ) ,  , X~ also varies too slowly with composition t o  

account f o r  the observations, and i n  addition exhibits a curvature 

opposite t o  tha t  determined experimentally. 



Figure 2. The magnetic susceptibility/gm mole of VCx, extrapolated 

t o  0 K, plotted as a function of the carbon concentration, 

X g  'ion is  the ion core diamagnetism. X i s  the  Pauli r 
paramagnetism as  estimated from the electronic specific 

heat. i s  the Van Vleck o rb i t a l  paramagnetism as 

calculated by subtracting from Xmeas the  sum of Xion, 

++ 2 
X and 5, where %= -1/3(m/m ) X and m*/m=l, 2, r r 
and m f o r  curves a, b, and c, respectively. The dotted 

curve represents as calculated from the t ight -  

binding model discussed i n  the text ,  using the  

electronic density of s t a t e s  inferred from the low- 

temperature specific heat (~awndes e t  al. 1970). 
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The o rb i t a l  paramagnetism, b, remains t o  be examined as  a 

possible explanation f o r  the observations, but too l i t t l e  information 

i s  available regarding the  electronic band structure of VCx t o  permit 

calculating i n  d e t a i l  the magnitude of t h i s  contribution t o  the sus- 

cept ibi l i ty .  The possible existence of o rb i t a l  paramagnetism i n  VCx 

was recognized by Froidevaux and Rossier (1967) and by Caudron, 

Ducastelle and Costa (1970)) but Caudron, Castaing and Costa (1970) 

concluded tha t  i t s  magnitude i s  abnormally small. Studies of the  

v5' Knight shift  and spin-lat t ice relaxation time a t  l a t t i c e  s i t e s  

of cubic symmetry i n  V C (Lye and Kahn 1969) provided support f o r  
8 7  

the l a t t e r  conclusion by demonstrating tha t  the  orbi t  a1  contribution 

t o  the migh t  sh i f t  i s  small, probably l e s s  than 10% of tha t  due t o  

core polarization. The question may be resolved i n  part by using 

+ + ) A range the present resul t s  t o  e stimate * Xmeas-( Xion XP 5 
of values w i l l  be obtained f o r  b, depending on the  effective mass 

r a t i o  m*/m, chosen t o  calculate 5. Curves of )bv versus x derived 

i n  t h i s  manner a re  shown i n  f ig .  2 fo r  m*/m = 1 (curve a) and 2 

(curve b) , and for  s=O (m*/m = a) (curve c)  . This approach suggests 

tha t  indeed i s  small fo r  x Y- 0.8 if ,  as expected, m*/m > 1. For 

x near 0 -76, however, %1: 60 x l o 6  emu/mole, or  approximately one- 

th i rd  as  large as the quite considerable orb i ta l  paramagnetism i n  

vanadium metal (clogston, Gossard, Jaccarino and Yafet l962, 

Butterworth l964.), and, as  i n  vamdium metal, accounts fo r  more 

than half of the measured susceptibili ty.  

This behavior cannot be explained readily on the basis  of the 

simple model often used i n  discussions of b. This model 

suggests tha t  b a NONU, where No and Nu are  the numbers of 



occupied and unoccupied states, respectively, i n  the energy 

bands that  produce the orbital  paramagnetism, and No+ NU=lO/atom 

for  d-bands . Although i s  o d y  50% larger a t  x = 0.76 than 

would be expected by extrapolating from the orbital  paramagnetism 

of vanadium metal, i t s  magnitude changes with carbon content much 

too quickly t o  be accounted fo r  on th i s  basis. 

As Clogston, Jaccarino and Yafet (U64) have emphasized, 

however, t h i s  model neglects the effects of differences i n  the 

matrix elements of orbital  angular momentum connecting electronic 

states within the various bands responsible fo r  the orbital  para- 

magnetism. Inclusion of th i s  factor allows a qualitative explana- 

t ion t o  be given for  the variation of X with x. In particular, 

when XW i s  written i n  the tight-binding approximation ( ~ u b o  and 

Obata 1956; Clogston, Jaccarino and Yafet D64); 

it i s  evident that  a strong component of orbital  paramagnetism w i l l  

ar ise only if  the members of a t  leas t  one pair of energy bands, 

n and n1 l i e  on opposite sides of the 3krmi  level (f(EIJl)#f(Envk)), 

a t  small energy separations (E,,,-E,), and have large matrix 

elements of angular momentum connecting the states i n  these bands 

a t  the same point k i n  the Rrillouin zone. Only a limited number 

of such pairs of energy bands can be expected t o  sat isfy these 

c r i t e r ia  simultaneously. For the most simple case, i n  which the 

orbital  paramagnetism arises from a single pair of bands 



having matrix elements of L t h a t  do not change rapidly over the  

relevant portion of the B i l l o u i n  zone, + i s  approximately 

proportional t o  the  integrated density of vacant s t a t e s  i n  the  

upper band. 

The rapid decrease of XVV as  the  carbon concentration of 

VCx i s  increased beyond x = 0.76 can be understood on t h i s  basis 

t o  resul t  from the  elevation of the  Fermi leve l  through a narrow 

peak i n  the density-of-states curve. I n  accord with a previous 

proposal regarding the electronic specific heat of VCx (~owndes 

e t  a l .  1 9 7 0 ) ~  it i s  suggested tha t  the  peak responsible f o r  t h i s  

variation of the  magnetic suscept ibi l i ty  a r i ses  from an accumu- 

l a t ion  of s t a t e s  near the  W1 point i n  the  Brillouin zone. The 

more pronounced variation of the suscept ibi l i ty  re la t ive  t o  tha t  

of the specific heat i s  a consequence of the  f ac t  tha t  the electronic 

specific heat i s  determined by the  density of s t a t e s  a t  the Fermi level, 

whereas the o rb i t a l  paramagnetism i s  proportional t o  the integral  of these 

s t a t e s  from the  Fermi level  t o  the  top of the  relevant band. 

An approximate band structure fo r  VC ( ~ ~ e  and Logothetis 1966; 

me, Hollox and Venables D68) suggests tha t  k o  se t s  of occupied 

bands may interact  with those connected with W1 t o  provide a major 

portion of the  o rb i t a l  paramagnetism. One of these, a single band 

connected with W2, l i e s  approximately 0.75 eV below W1, the  other, 

a doubly degenerate band a t  W l i e s  approximately 1.77 eV below Wl. 3 
An order of magnitude estimate can be made fo r  the  o rb i t a l  paramagnetism 

contributed by.these bands i f  it i s  assumed t h a t  the matrix elements of 

orb i t  a1  angular momentum ( abbreviated M) , are approximately the  same 

f o r  each pa i r  of bands. Under these circumstances, 



where nu(wl) i s  the  integrated density of unoccupied s t a t e s  within 

the  W1 peak. If these pairs  of bands provided the  only contributions 

t o  the orb i ta l  paramagnetism, it would be expected t o  decline mono- 

tu;nically 2rom i t s  value a t  low carbon concentrations, and vanish when 

the  upper bands were f i l led .  Using as a guide the  density-of-states 

curve inferred from measurements of the  electronic specific heat 

(~owndes e t  al .  1970), the  composition at which the  W1 bands are 

f i l l e d  i s  estimated at approximately VC 0.9' The variation of Xw 
a t  lower carbon concerrbrations can then be determined i f  it i s  assumed 

tha t  most of the s t a t e s  at the  Fermi level  of VCx contribute t o  the  

2 orb i t a l  paramagnetism. The resul t ,  calculated f o r  1 M I  =2 (clogston 

e t  al .  u 6 2 ) ,  i s  shown as the  dotted curve i n  fig. 2. It should be 

noted tha t  a closely s i m i l a r  curve i s  obtained i f  it is assumed tha t  

approximately one electron i s  added t o  the  d-band f o r  each carbon atom 

incorporated in to  the VCx l a t t i c e  ( i n  which case, d q d x  = - 320 x ) . 
The agreement between t h i s  calculated curve and those inferred from 

the experimental data probably i s  as good as could be expected i n  view 

of the  numerous approximations employed. 011 the other hand, the evident 

discrepancies suggest tha t  i )  the  energy denominator employed here i s  

too large, and ii) the  matrix elements 1 ~ 1  are not precisely the same f o r  a l l  

s t a t e s  within the upper b a d .  Moreover, the  increase of + shuwn i n  f ig.  2 

at x = 0.87 suggests tha t  some of the newly occupied s t a t e s  immediately 

below the  Femi level  of VC 0.87 a lso  contribute t o  the  o rb i t a l  para- 

magnetism through interactions with s t i l l  higher vacant states.  



Consideration of t h i s  question must be deferred f o r  the present, 

however, because the  Knight shiifts of the v5' nuclear magnetic resonances 

i n  VCx have been found t o  decrease with increasing carbon content 

(Rroidevaux and Rossier 1967), opposite t o  the variation expected 

from the combined effects  of X and f o r  x 5 0.84. r 
According t o  t h i s  analysis, the o rb i t a l  paramagnetism depends 

primarily on the integrated density of s t a t e s  lying below the Fermi 

leve l  within the W1 peak. The variat ion of + with temperature i s  

~ e n s i t i v e ~ t h e r e f o r e ,  t o  the  manner i n  which thermal excitation 

influences the occupation of s t a t e s  i n  t h i s  peak. Because the  W1 

peak i s  narrow ("0.1 e ~ )  (Lowndes e t  a l .  1970), the degree of 

occupation i s  expected t o  be influenced s ignif icant ly by the presence 

of other overlapping bands tha t  do not otherwise contribute importantly 

t o  the o rb i t a l  paramagnetism. The measured temperature variations of 

the suscept ibi l i ty  could be accounted f o r  i n  each case i f  the W1 peak 

were superimposed on a background density of s t a t e s  tha t  increased 

toward higher energies, but insuff ic ient  idormat  ion i s  available a t  

present t o  permit evaluating t h i s  proposal. 

It may be noted tha t  variations of both X and d ~ / d ~  with x 

similar t o  those reported here f o r  VCx have been observed also f o r  

NbCx and TaCx (~orukhovich, Dubrovich, Dubrovskava, Matveenko, and 

Gel'd 1969), except tha t  the  m i n i m u m  suscept ib i l i t ies  f o r  these 

compounds occur a t  lower values of x, and the  increase i s  more 

pronounced a t  large x than i s  observed f o r  VCx. It appears 

desirable, therefore, t o  determine f o r  these compounds also the 

magnitude of the orb i t  a 1  paramagnetic contribution t o  t h e i r  

suscept ibi l i t ies .  



f? 4- SUMMARY AND CONCLUSIONS 

Measurements made between 77'K and 300 K on four crystals of 

VCx ( ~ 4 . 7 6 ,  0.81, 0.84, and 0.87) show that the magnetic suscepti- 

b i l i t y  decreases rapidly with increasing carbon content t o  a minimum 

near x=0.84, followed by a small increase a t  ~=0.87. An approximate 

analysis of the results  indicates that  t h i s  variation of the suscepti- 

b i l i t y  i s  determined primarily by the (van ~ l e c k )  orbital  paramagnetism, 

This behavior has been interpreted i n  terms of a simple model 

relating the magnitude of % t o  the number of vacant states i n  a 

band that produces a narrow peak i n  the density-of-states curve near 

the Fermi level of VCO 84' AS the carbon concentration increases, the . 
Fermi level r i ses  through th i s  peak and thereby causes the orbital  para- 

magnetism t o  decrease. It is suggested that  t h i s  peak arises from the 

energy bands connected with the W1 point i n  the Brillouin zone, and that  

the orbital  paramagnetism arises primarily from interactions between these 

bands and the ful ly  occupied bands connected with the lower-lying W; 

and W? points. The orbital  paramagnetism estimated i n  t h i s  manner for  
J 

vCO. 76 agrees i n  order of magnitude with that i d e r r e d  from experimental 

data, and the decrease of with increasing x follows qualitatively the 

trend expected. The increase of + a t  ~ 4 . 8 7  suggests, however, that 

additional contributions t o  the orbital  paramagnetism arise fo r  x 5 0.84. 

An apparent inconsistency arises from the fact  that the variations 

of both Xp and + seem t o  imply an increase of the v5' Knight sh i f t  

with increasing carbon content fo r  x 5 0.84, i n  opposition t o  the 

behavior observed by Froidevaux and Rossier (1.967). As these authors 

indicate, however, the Knight sh i f t  i s  determined by relatively localized 



effects,  whereas the magnetic suscept ibi l i ty  i s  a macroscopic 

average. The dis t inct ion i s  part icular ly evident i n  the substantial  

differences they observed between the Knight shif'ts of v51 atoms a t  

the various inequivalent crystallographic s i t e s  present i n  VCx. The 

problem deserves more detailed consideration than can be given i n  the  

present paper. 

The variations of the suscept ib i l i t ies  with temperature suggest 

tha t  the W1 peak is superimposed on a background density of s t a t e s  

tha t  increases toward higher energies. A quantitative analysis of the 

resul t s  must await more detailed information regarding the electronic 

structure and density of s t a t e s  i n  VC x 
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